The role of von Willebrand factor in hemostasis pathology
https://doi.org/10.21518/2307-1109-2022-12-2-79-102
Abstract
Von Willebrand factor (VWF) is a multimeric plasma glycoprotein present in endothelial cells, megakaryocytes, platelets, and connective tissue. It mediates platelet adhesion in small arteries. VWF also binds and protects coagulation factor VIII from degradation. Moreover, VWF is involved in inflammatory response, linking hemostasis and inflammation. VWF multimers and platelets attached to damaged or activated endothelium mediate leukocyte recruitment, facilitating local inflammatory response. At shear rates above 5000 s–1, VWF molecules are capable of hydrodynamic activation that changes their conformation from globular to fibrillar. Therefore, VWF plays a key role in cellular hemostasis at high shear rates. Acquired and inherited disfunction, defective synthesis or increased proteolysis of VWF multimers lead to bleeding, as in von Willebrand disease or Heyde syndrome. Pathological activation of VWF may lead to the development of thrombotic complications of coronary artery disease. COVID-19, especially severe form, is characterized by prothrombotic shift in pulmonary vascular bed. Following endothelial damage, VWF plasma level rises and ADAMTS-13 activity decreases. In patients with COVID-19, a change in the VWF/ADAMTS-13 ratio is associated with an increase in the risk of thromboembolic complications. Therefore, assessment of hydrodynamic activation of VWF under flow conditions may be valuable in fundamental research and laboratory diagnostics.
About the Authors
Yu. N. AvtaevaRussian Federation
Yuliya N. Avtaeva, Cand. Sci. (Med.), Junior Researcher, Laboratory of Cellular Hemostasis
15a, 3rd Cherepkovskaya St., Moscow, 121552
I. S. Melnikov
Russian Federation
Ivan S. Melnikov, Researcher, Laboratory of Cellular Hemostasis; Junior Researcher, Laboratory of Gas Exchange, Biomechanics and Barophysiology
15a, 3rd Cherepkovskaya St., Moscow, 121552
76a, Khoroshevskoye Shosse, Moscow, 123007
S. A. Vasiliev
Russian Federation
Sergey A. Vasiliev, Dr. Sci. (Med.), Professor, Leading Researcher
44, Novyy Zykovskiy Proezd, Moscow
Z. A. Gabbasov
Russian Federation
Zufar A. Gabbasov, Dr. Sci. (Biol.), Chief Researcher, Laboratory of Cellular Hemostasis
15a, 3rd Cherepkovskaya St., Moscow, 121552
References
1. Lenting P.J., Christophe O.D., Denis CV. von Willebrand factor biosynthesis, secretion, and clearance: connecting the far ends. Blood. 2015;125(13):2019–2028. https://doi.org/10.1182/blood-2014-06-528406.
2. Von Willebrand E.A. Hereditary pseudohaemophilia. Haemophilia. 1999;5(3):223–231. https://doi.org/10.1046/j.1365-2516.1999.00302.x.
3. Sadler JE. Biochemistry and genetics of von Willebrand factor. Annu Rev Biochem. 1998;67:395–424. https://doi.org/10.1146/annurev.biochem.67.1.395.
4. Davie E.W., Ratnoff O.D. Waterfall sequence for intrinsic blood clotting. Science. 1964;145(3638):1310–1312. https://doi.org/10.1126/science.145.3638.1310.
5. Macfarlane R.G. An enzyme cascade in the blood clotting mechanism, and its function as a biochemical amplifier. Nature. 1964;202:498–499. https://doi.org/10.1038/202498a0.
6. McMichael M. New models of hemostasis. Top Companion Anim Med. 2012;27(2):40–45. https://doi.org/10.1053/j.tcam.2012.07.005.
7. Reininger A.J. Function of von Willebrand factor in haemostasis and thrombosis. Haemophilia. 2008;14(Suppl. 5):11–26. https://doi.org/10.1111/j.1365-2516.2008.01848.x.
8. Zimmerman T.S., Ratnoff O.D., Powell A.E. Immunologic differentiation of classic hemophilia (factor 8 deficiency) and von Willebrand’s dissase, with observations on combined deficiencies of antihemophilic factor and proaccelerin (factor V) and on an acquired circulating anticoagulant against antihemophilic factor. J Clin Invest. 1971;50(1):244–254. https://doi.org/10.1172/JCI106480.
9. Kiouptsi K., Reinhardt C. Physiological Roles of the von Willebrand Factor-Factor VIII Interaction. Subcell Biochem. 2020;94:437–464. https://doi.org/10.1007/978-3-030-41769-7_18.
10. Hoffman M. A cell-based model of coagulation and the role of factor VIIa. Blood Rev. 2003;17(Suppl. 1):S1–5. https://doi.org/10.1016/s0268-960x(03)90000-2.
11. O’Donnell J.S., O’Sullivan J.M., Preston R.J.S. Advances in understanding the molecular mechanisms that maintain normal haemostasis. Br J Haematol. 2019;186(1):24–36. https://doi.org/10.1111/bjh.15872.
12. Ferreira C.N., Sousa M de O., Dusse L.M.S., Carvalho M das G. O novo modelo da cascata de coagulação baseado nas superfícies celulares e suas implicações. Rev Bras Hematol Hemoter. 2010;32(5):416–421. https://doi.org/10.1590/S1516-84842010000500016.
13. Schastlivtsev I.V., Lobastov K.V., Tsaplin S.N., Mkrtychev D.S. Modern view on hemostasis system: cell theory. Meditsinskiy Sovet. 2019;(16):72–77. (In Russ.) https://doi.org/10.21518/2079-701X-2019-16-72-77.
14. Smith S.A. The cell-based model of coagulation. J Vet Emerg Crit Care (San Antonio). 2009;19(1):3–10. https://doi.org/10.1111/j.1476-4431.2009.00389.x.
15. Ginsburg D., Handin R.I., Bonthron D.T., Donlon T.A., Bruns G.A., Latt S.A., Orkin S.H. Human von Willebrand factor (vWF): isolation of complementary DNA (cDNA) clones and chromosomal localization. Science. 1985;228(4706):1401–1406. https://doi.org/10.1126/science.3874428.
16. Patracchini P., Calzolari E., Aiello V., Palazzi P., Banin P., Marchetti G., Bernardi F. Sublocalization of von Willebrand factor pseudogene to 22q11.22-q11.23 by in situ hybridization in a 46,X,t(X;22)(pter;q11.21) translocation. Hum Genet. 1989;83(3):264–266. https://doi.org/10.1126/10.1007/BF00285168.
17. Zhou Y.F., Eng E.T., Zhu J., Lu C., Walz T., Springer T.A. Sequence and structure relationships within von Willebrand factor. Blood. 2012;120(2):449–458. https://doi.org/10.1182/blood-2012-01-405134.
18. Pannekoek H., Voorberg J. Molecular cloning, expression and assembly of multimeric von Willebrand factor. Baillieres Clin Haematol. 1989;2(4):879–896. https://doi.org/10.1016/s0950-3536(89)80050-2.
19. James P., Rydz N. Chapter 138 – Structure, Biology, and Genetics of von Willebrand Factor. In: Hoffman R., Benz E.J. Jr, Silberstein L.E., Heslop H.E., Weitz J.I., Anastasi J. Hematology. Elsevier; 2018, pp. 2051–2063. https://doi.org/10.1016/B978-0-323-35762-3.00138-4.
20. Springer T.A. Biology and physics of von Willebrand factor concatamers. J Thromb Haemost. 2011;9(Suppl. 1):130–143. https://doi.org/10.1111/j.1538-7836.2011.04320.x.
21. Berriman J.A., Li S., Hewlett L.J., Wasilewski S., Kiskin F.N., Carter T. et al. Structural organization of Weibel-Palade bodies revealed by cryo-EM of vitrified endothelial cells. Proc Natl Acad Sci U S A. 2009;106(41):17407–17412. https://doi.org/10.1073/pnas.0902977106.
22. Van de Ven W.J., Voorberg J., Fontijn R., Pannekoek H., van den Ouweland A.M., van Duijnhoven H.L. et al. Furin is a subtilisin-like proprotein processing enzyme in higher eukaryotes. Mol Biol Rep. 1990;14(4):265–275. https://doi.org/10.1007/BF00429896.
23. Matsui T., Titani K., Mizuochi T. Structures of the asparagine-linked oligosaccharide chains of human von Willebrand factor. Occurrence of blood group A, B, and H(O) structures. J Biol Chem. 1992;267(13):8723–8731. Available at: https://www.jbc.org/article/S0021-9258(19)50338-6/pdf.
24. Bowen D.J. An influence of ABO blood group on the rate of proteolysis of von Willebrand factor by ADAMTS13. J Thromb Haemost. 2003;1(1):33–40. https://doi.org/10.1046/j.1538-7836.2003.00007.x.
25. Ng C.J., Di Paola J. von Willebrand Disease: Diagnostic Strategies and Treatment Options. Pediatr Clin North Am. 2018;65(3):527–541. https://doi.org/10.1016/j.pcl.2018.02.004.
26. Jonnalagadda D., Izu L.T., Whiteheart S.W. Platelet secretion is kinetically heterogeneous in an agonist-responsive manner. Blood. 2012;120(26):5209–5216. https://doi.org/10.1182/blood-2012-07-445080.
27. Blair P., Flaumenhaft R. Platelet alpha-granules: basic biology and clinical correlates. Blood Rev. 2009;23(4):177–189. https://doi.org/10.1016/j.blre.2009.04.001.
28. Kim D.A., Ashworth K.J., Di Paola J., Ku D.N. Platelet α-granules are required for occlusive high-shear-rate thrombosis. Blood Adv. 2020;4(14):3258–3267. https://doi.org/10.1182/bloodadvances.2020002117.
29. Schneider S.W., Nuschele S., Wixforth A., Gorzelanny C., Alexander-Katz A., Netz R.R., Schneider M.F. Shear-induced unfolding triggers adhesion of von Willebrand factor fibers. Proc Natl Acad Sci U S A. 2007;104(19):7899–903. https://doi.org/10.1073/pnas.0608422104.
30. Lancellotti S., Sacco M., Basso M., De Cristofaro R. Mechanochemistry of von Willebrand factor. Biomol Concepts. 2019;10(1):194–208. https://doi.org/10.1515/bmc-2019-0022.
31. Zhang Q., Zhou Y.F., Zhang C.Z., Zhang X., Lu C., Springer T.A. Structural specializations of A2, a force-sensing domain in the ultralarge vascular protein von Willebrand factor. Proc Natl Acad Sci U S A. 2009;106(23):9226–9231. https://doi.org/10.1073/pnas.0903679106.
32. Bryckaert M., Rosa J.P., Denis C.V., Lenting P.J. Of von Willebrand factor and platelets. Cell Mol Life Sci. 2015;72(2):307–326. https://doi.org/10.1007/s00018-014-1743-8.
33. South K., Lane D.A. ADAMTS-13 and von Willebrand factor: a dynamic duo. J Thromb Haemost. 2018;16(1):6–18. https://doi.org/10.1111/jth.13898.
34. South K., Luken B.M., Crawley J.T., Phillips R., Thomas M., Collins R.F. et al. Conformational activation of ADAMTS13. Proc Natl Acad Sci U S A. 2014;111(52):18578–18583. https://doi.org/10.1073/pnas.1411979112.
35. Saha M., McDaniel J.K., Zheng X.L. Thrombotic thrombocytopenic purpura: pathogenesis, diagnosis and potential novel therapeutics. J Thromb Haemost. 2017;15(10):1889–1900. https://doi.org/10.1111/jth.13764.
36. Fogarty H., Doherty D., O’Donnell J.S. New developments in von Willebrand disease. Br J Haematol. 2020;191(3):329–339. https://doi.org/10.1111/bjh.16681.
37. Casonato A., Galletta E., Cella G., Barbon G., Daidone V. Acquired von Willebrand Syndrome Hiding Inherited von Willebrand Disease Can Explain Severe Bleeding in Patients With Aortic Stenosis. Arterioscler Thromb Vasc Biol. 2020;40(9):2187–2194. https://doi.org/10.1161/ATVBAHA.120.314656.
38. Zhang C., Kelkar A., Neelamegham S. von Willebrand factor self-association is regulated by the shear-dependent unfolding of the A2 domain. Blood Adv. 2019;3(7):957–968. https://doi.org/10.1182/bloodadvances.2018030122.
39. Rauch A., Wohner N., Christophe O.D., Denis C.V., Susen S., Lenting P.J. On the versatility of von Willebrand factor. Mediterr J Hematol Infect Dis. 2013;5(1):e2013046. https://doi.org/10.4084/MJHID.2013.046.
40. Nicolai L., Massberg S. Platelets as key players in inflammation and infection. Curr Opin Hematol. 2020;27(1):34–40. https://doi.org/10.1097/MOH.0000000000000551.
41. D’alessandro E., Becker C., Bergmeier W., Bode C., Bourne J.H., Brown H. et al. Thrombo-Inflammation in Cardiovascular Disease: An Expert Consensus Document from the Third Maastricht Consensus Conference on Thrombosis. Thromb Haemost. 2020;120(4):538–564. https://doi.org/10.1055/s-0040-1708035.
42. Chen J., Chung D.W. Inflammation, von Willebrand factor, and ADAMTS13. Blood. 2018;132(2):141–147. https://doi.org/10.1182/blood-2018-02-769000.
43. Nieswandt B., Kleinschnitz C., Stoll G. Ischaemic stroke: a thrombo-inflammatory disease? J Physiol. 2011;589(17):4115–4123. https://doi.org/10.1113/jphysiol.2011.212886.
44. Zhang X., Halvorsen K., Zhang C.Z., Wong W.P., Springer T.A. Mechanoenzymatic cleavage of the ultralarge vascular protein von Willebrand factor. Science. 2009;324(5932):1330–1334. https://doi.org/10.1126/science.1170905.
45. Sadler J.E., Budde U., Eikenboom J.C., Favaloro E.J., Hill F.G., Holmberg L. et al. Update on the pathophysiology and classification of von Willebrand disease: a report of the Subcommittee on von Willebrand Factor. J Thromb Haemost. 2006;4(10):2103–2114. https://doi.org/10.1111/j.1538-7836.2006.02146.x.
46. James P.D., Connell N.T., Ameer B., Di Paola J., Eikenboom J., Giraud N. et al. ASH ISTH NHF WFH 2021 guidelines on the diagnosis of von Willebrand disease. Blood Adv. 2021;5(1):280–300. https://doi.org/10.1182/bloodadvances.2020003265.
47. Van Galen K.P., Mauser-Bunschoten E.P., Leebeek F.W. Hemophilic arthropathy in patients with von Willebrand disease. Blood Rev. 2012;26(6):261–266. https://doi.org/10.1016/j.blre.2012.09.002.
48. Calmette L., Clauser S. La maladie de Willebrand. Rev Med Interne. 2018;39(12):918–924. https://doi.org/10.1016/j.revmed.2018.08.005.
49. Leebeek F.W., Eikenboom J.C. Von Willebrand’s Disease. N Engl J Med. 2016;375(21):2067–2080. https://doi.org/10.1056/NEJMra1601561.
50. Simone J.V., Cornet J.A., Abildgaard C.F. Acquired von Willebrand’s syndrome in systemic lupus erythematosus. Blood. 1968;31(6):806–812. https://doi.org/10.1182/blood.V31.6.806.806.
51. Leebeek F.W.G. New Developments in Diagnosis and Management of Acquired Hemophilia and Acquired von Willebrand Syndrome. Hemasphere. 2021;5(6):e586. https://doi.org/10.1097/HS9.0000000000000586.
52. Ibrahim H., Rondina M.T., Kleiman N.S. Von Willebrand factor and the aortic valve: Concepts that are important in the transcatheter aortic valve replacement era. Thromb Res. 2018;170:20–27. https://doi.org/10.1016/j.thromres.2018.07.028.
53. Warkentin T.E., Moore J.C., Morgan D.G. Aortic stenosis and bleeding gastrointestinal angiodysplasia: is acquired von Willebrand’s disease the link? Lancet. 1992;340(8810):35–37. https://doi.org/10.1016/0140-6736(92)92434-h.
54. Randi A.M., Smith K.E., Castaman G. von Willebrand factor regulation of blood vessel formation. Blood. 2018;132(2):132–140. https://doi.org/10.1182/blood-2018-01-769018.
55. Theis S.R., Turner S.D. Heyde Syndrome. Treasure Island (FL): StatPearls Publishing; 2022. Available at: https://www.ncbi.nlm.nih.gov/books/NBK551625/.
56. Seaman C.D., Yabes J., Comer D.M., Ragni M.V. Does deficiency of von Willebrand factor protect against cardiovascular disease? Analysis of a national discharge register. J Thromb Haemost. 2015;13(11):1999–2003. https://doi.org/10.1111/jth.13142.
57. Xu A.G., Xu R.M., Lu C.Q., Yao M.Y., Zhao W., Fu X. et al. Correlation of von Willebrand factor gene polymorphism and coronary heart disease. Mol Med Rep. 2012;6(5):1107–1110. https://doi.org/10.3892/mmr.2012.1037.
58. Thompson S.G., Kienast J., Pyke S.D., Haverkate F., van de Loo J.C. Hemostatic factors and the risk of myocardial infarction or sudden death in patients with angina pectoris. European Concerted Action on Thrombosis and Disabilities Angina Pectoris Study Group. N Engl J Med. 1995;332(10):635–641. https://doi.org/10.1056/NEJM199503093321003.
59. Spiel A.O., Gilbert J.C., Jilma B. von Willebrand factor in cardiovascular disease: focus on acute coronary syndromes. Circulation. 2008;117(11):1449–1459. https://doi.org/10.1161/CIRCULATIONAHA.107.722827.
60. Morange P.E., Simon C., Alessi M.C., Luc G., Arveiler D., Ferrieres J. et al. Endothelial cell markers and the risk of coronary heart disease: the Prospective Epidemiological Study of Myocardial Infarction (PRIME) study. Circulation. 2004;109(11):1343–1348. https://doi.org/10.1161/01.CIR.0000120705.55512.EC.
61. Joly B.S., Coppo P., Veyradier A. An update on pathogenesis and diagnosis of thrombotic thrombocytopenic purpura. Expert Rev Hematol. 2019;12(6):383–395. https://doi.org/10.1080/17474086.2019.1611423.
62. Moake J.L., Rudy C.K., Troll J.H., Weinstein M.J., Colannino N.M., Azocar J. et al. Unusually large plasma factor VIII: von Willebrand factor multimers in chronic relapsing thrombotic thrombocytopenic purpura. N Engl J Med. 1982;307(23):1432–1435. https://doi.org/10.1056/NEJM198212023072306.
63. Fujikawa K., Suzuki H., McMullen B., Chung D. Purification of human von Willebrand factor-cleaving protease and its identification as a new member of the metalloproteinase family. Blood. 2001;98(6):1662–1666. https://doi.org/10.1182/blood.v98.6.1662.
64. Hollifield A.L., Arnall J.R., Moore D.C. Caplacizumab: an anti-von Willebrand factor antibody for the treatment of thrombotic thrombocytopenic purpura. Am J Health Syst Pharm. 2020;77(15):1201–1207. https://doi.org/10.1093/ajhp/zxaa151.
65. Scully M., Knöbl P., Kentouche K., Rice L., Windyga J., Schneppenheim R. et al. Recombinant ADAMTS-13: first-in-human pharmacokinetics and safety in congenital thrombotic thrombocytopenic purpura. Blood. 2017;130(19):2055–2063. https://doi.org/10.1182/blood-2017-06-788026.
66. Bhogal P., Jensen M., Hart D., Makalanda L., Collins G.B., Spooner O., Jaffer O. Von Willebrand factor. Clin Med (Lond). 2020;20(6):e279. https://doi.org/10.7861/clinmed.Let.20.6.3.
67. Wool G.D., Miller J.L. The Impact of COVID-19 Disease on Platelets and Coagulation. Pathobiology. 2021;88(1):15–27. https://doi.org/10.1159/000512007.
68. Mancini I., Baronciani L., Artoni A., Colpani P., Biganzoli M., Cozzi G. et al. The ADAMTS13-von Willebrand factor axis in COVID-19 patients. J Thromb Haemost. 2021;19(2):513–521. https://doi.org/10.1111/jth.15191.
69. Lyanguzov A.V., Sergunina O.Yu., Ignatiev S.V., Kovtunova M.E., Kalinina S.L., Semakin A.S. The role of von Willebrand factor in the development of systemic inflammation, coagulopathy and organ dysfunctions. Tromboz, Gemostaz I Reologiya. 2021;(3):4–11. (In Russ.) https://doi.org/10.25555/THR.2021.3.0979.
70. Favaloro E.J., Henry B.M., Lippi G. Increased VWF and Decreased ADAMTS-13 in COVID-19: Creating a Milieu for (Micro)Thrombosis. Semin Thromb Hemost. 2021;47(4):400–418. https://doi.org/10.1055/s-0041-1727282.
71. Ladikou E.E., Sivaloganathan H., Milne K.M., Arter W.E., Ramasamy R., Saad R. et al. Von Willebrand factor (vWF): marker of endothelial damage and thrombotic risk in COVID-19? Clin Med (Lond). 2020;20(5):e178–e182. https://doi.org/10.7861/clinmed.2020-0346.
72. Zayratyants O.V. (ed.). The pathological anatomy of COVID-19: an atlas. Moscow: Research Institute of Health Organization and Medical Management; 2020. 140 p. (In Russ.) Available at: https://niioz.ru/upload/medialibrary/2c5/2c5e36822be6633e1cbd2e72058720ae.pdf.
73. Ali M.A.M., Spinler S.A. COVID-19 and thrombosis: From bench to bedside. Trends Cardiovasc Med. 2021;31(3):143–160. https://doi.org/10.1016/j.tcm.2020.12.004.
74. Parisi R., Costanzo S., Di Castelnuovo A., de Gaetano G., Donati M.B., Iacoviello L. Different Anticoagulant Regimens, Mortality, and Bleeding in Hospitalized Patients with COVID-19: A Systematic Review and an Updated Meta-Analysis. Semin Thromb Hemost. 2021;47(4):372–391. https://doi.org/10.1055/s-0041-1726034.
75. Bodó I., Eikenboom J., Montgomery R., Patzke J., Schneppenheim R., Di Paola J. Platelet-dependent von Willebrand factor activity. Nomenclature and methodology: communication from the SSC of the ISTH. J Thromb Haemost. 2015;13(7):1345–1350. https://doi.org/10.1111/jth.12964.
76. Vanhoorelbeke K., Cauwenberghs N., Vauterin S., Schlammadinger A., Mazurier C., Deckmyn H. A reliable and reproducible ELISA method to measure ristocetin cofactor activity of von Willebrand factor. Thromb Haemost. 2000;83(1):107–113. http://doi.org/10.1055/s-0037-1613765.
77. Lawrie A.S., Stufano F., Canciani M.T., Mackie I.J., Machin S.J., Peyvandi F. A comparative evaluation of a new automated assay for von Willebrand factor activity. Haemophilia. 2013;19(2):338–342. http://doi.org/10.1111/hae.12064.
78. Kasai M., Osako M., Inaba Y., Yamabe K., Aoki M. Acquired von Willebrand syndrome secondary to mitral and aortic regurgitation. J Card Surg. 2020;35(9):2396–2398. http://doi.org/10.1111/jocs.14796.
79. Favaloro E.J. The Platelet Function Analyser (PFA)-100 and von Willebrand disease: a story well over 16 years in the making. Haemophilia. 2015;21(5):642–645. http://doi.org/10.1111/hae.12710.
80. Duffy D.C., McDonald J.C., Schueller O.J., Whitesides G.M. Rapid Prototyping of Microfluidic Systems in Poly(dimethylsiloxane). Anal Chem. 1998;70(23):4974–4984. http://doi.org/10.1021/ac980656z.
81. Neeves K.B., Maloney S.F., Fong K.P., Schmaier A.A., Kahn M.L., Brass L.F., Diamond S.L. Microfluidic focal thrombosis model for measuring murine platelet deposition and stability: PAR4 signaling enhances shear-resistance of platelet aggregates. J Thromb Haemost. 2008;6(12):2193–2201. http://doi.org/10.1111/j.1538-7836.2008.03188.x.
82. Tischer A., Madde P., Blancas-Mejia L.M., Auton M. A molten globule intermediate of the von Willebrand factor A1 domain firmly tethers platelets under shear flow. Proteins. 2014;82(5):867–878. http://doi.org/10.1002/prot.24464.
83. Zheng Y., Chen J., Craven M., Choi N.W., Totorica S., Diaz-Santana A. et al. In vitro microvessels for the study of angiogenesis and thrombosis. Proc Natl Acad Sci U S A. 2012;109(24):9342–9347. http://doi.org/10.1073/pnas.1201240109.
84. Bao J., Xiao J., Mao Y., Zheng X.L. Carboxyl terminus of ADAMTS13 directly inhibits platelet aggregation and ultra large von Willebrand factor string formation under flow in a free-thiol-dependent manner. Arterioscler Thromb Vasc Biol. 2014;34(2):397–407. http://doi.org/10.1161/ATVBAHA.113.302547.
85. Van Kruchten R., Cosemans J.M., Heemskerk J.W. Measurement of whole blood thrombus formation using parallel-plate flow chambers – a practical guide. Platelets. 2012;23(3):229–242. http://doi.org/10.3109/09537104.2011.630848.
86. Nesbitt W.S., Tovar-Lopez F.J., Westein E., Harper I.S., Jackson S.P. A multimode-TIRFM and microfluidic technique to examine platelet adhesion dynamics. Methods Mol Biol. 2013;1046:39–58. http://doi.org/10.1007/978-1-62703-538-5_3.
87. Branchford B.R., Ng C.J., Neeves K.B., Di Paola J. Microfluidic technology as an emerging clinical tool to evaluate thrombosis and hemostasis. Thromb Res. 2015;136(1):13–19. http://doi.org/10.1016/j.thromres.2015.05.012.
88. Neeves K.B., Onasoga A.A., Wufsus A.R. The use of microfluidics in hemostasis: clinical diagnostics and biomimetic models of vascular injury. Curr Opin Hematol. 2013;20(5):417–423. http://doi.org/10.1097/MOH.0b013e3283642186.
89. Colace T.V., Tormoen G.W., McCarty O.J., Diamond S.L. Microfluidics and coagulation biology. Annu Rev Biomed Eng. 2013;15:283–303. http://doi.org/10.1146/annurev-bioeng-071812-152406.
90. Hastings S.M., Griffin M.T., Ku D.N. Hemodynamic studies of platelet thrombosis using microfluidics. Platelets. 2017;28(5):427–433. http://doi.org/10.1080/09537104.2017.1316483.
91. Brouns S.L.N., van Geffen J.P., Heemskerk J.W.M. High-throughput measurement of human platelet aggregation under flow: application in hemostasis and beyond. Platelets. 2018;29(7):662–669. http://doi.org/10.1080/09537104.2018.1447660.
92. Schoeman R.M., Lehmann M., Neeves K.B. Flow chamber and microfluidic approaches for measuring thrombus formation in genetic bleeding disorders. Platelets. 2017;28(5):463–471. http://doi.org/10.1080/09537104.2017.1306042.
93. Avtaeva Yu.N., Melnikov I.S., Gabbasov, Z.A. Real-Time Recording of Platelet Adhesion to Fibrinogen-Coated Surface under Flow Conditions. Bulletin of Experimental Biology and Medicine. 2018;165(1):157–160. https://doi.org/10.1007/s10517-018-4119-5.
94. Avtaeva Yu.N., Melnikov I.S., Okhota S.D., Zozulya N.I., Gabbasov Z.A. Kinetics of Platelet Adhesion to Protein-Coated Surface in Whole Blood Samples at High Flow Rates. Bulletin of Experimental Biology and Medicine. 2020;169(2):229–232. https://doi.org/10.1007/s10517-020-04856-z.
95. Gabbasov Z.A., Avtaeva Y.N., Melnikov I.S., Okhota S.D., Caprnda M., Mozos I. et al. Kinetics of platelet adhesion to a fibrinogen-coated surface in whole blood under flow conditions. J Clin Lab Anal. 2021;35(9):e23939. https://doi.org/10.1002/jcla.23939.
96. Scully M., Cataland S.R., Peyvandi F., Coppo P., Knöbl P., Kremer Hovinga J.A. et al. Caplacizumab Treatment for Acquired Thrombotic Thrombocytopenic Purpura. N Engl J Med. 2019;380(4):335–346. https://doi.org/10.1056/NEJMoa1806311.
Review
For citations:
Avtaeva Yu.N., Melnikov I.S., Vasiliev S.A., Gabbasov Z.A. The role of von Willebrand factor in hemostasis pathology. Aterotromboz = Atherothrombosis. 2022;12(2):79-102. (In Russ.) https://doi.org/10.21518/2307-1109-2022-12-2-79-102

This work is licensed under a Creative Commons Attribution Attribution-NonCommercial-NoDerivs License.